GCSE (9-1)

Physics A (Gateway Science)

J249/03: Paper 3 (Higher Tier)

General Certificate of Secondary Education

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2020

Annotation	Meaning
Correct response	
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Answers that can be accepted
ALLOW	Words which are not essential to gain credit
()	Underlined words must be present in answer to score a mark
ECF	Alternative wording
AW	Or reverse argument
ORA	

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Physics A:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate. AO3.1a Analyse information and ideas to interpret. AO3.1b AO3.2 Analyse information and ideas to evaluate. AO3.2a Analyse information and ideas to make judgements and draw conclusions. AO3.2b Analyse information and ideas to draw conclusions. AO3.3 AO3.3a Analyse information and ideas to develop and improve experimental procedures. Analyse information and ideas to develop experimental procedures. Analyse information and ideas to improve experimental procedures.

For answers to Section A if an answer box is blank ALLOW correct indication of answer e.g. circled or underlined.

		Answer	Marks	AO element	Guidance
1	D		1	1.1	
2	B		1	2.1	
3	C		1	2.1	
4	D		1	2.1	
5	B		1	1.2	
6	A		1	1.1	
7	D		1	2.1	
8	C		1	1.1	
9	B		1	2.1	
10	A		1	2.1	
11	A		1	2.1	
12	A		1	1.1	
13	A		1	1.1	
14	B		1	2.1	
15	A		1	2.1	

Question			Answer	Marks	AO element	Guidance
16	(a)	(i)	(Ruler has) equal numbers of protons and electrons / ORA \checkmark So (effects of positive charges and negative charges) cancel out / AW / ORA \checkmark	2	2×1.1	ALLOW equal numbers of positive and negative charges/opposite charges / ORA ALLOW ruler has not lost/gained electrons / ORA ALLOW ruler islatoms are neutral unless there is a loss/gain of electrons / ORA ALLOW if the ruler had been charged, movement of electrons (to/from the air) would discharge it ALLOW overall/net charge is zero/neutral / ORA IGNORE just charge is neutral
		(ii)	Electrons are transferred (from/to the ruler or from/to the cloth) / ORA \checkmark And any one from: Charges are no longer equal / AW \checkmark Different numbers of protons and electrons / AW \checkmark Effects no longer cancel out / AW \checkmark	2	2×1.1	ALLOW electrons are lost/gained DO NOT ALLOW protons/positive charges move ALLOW ruler becomes negative/positive with correct movement of electrons $\checkmark \checkmark$
	(b)	(i)	They must be opposite/unlike charges / one is positive and one is negative / one is a proton and one is an electron \checkmark And any two from: They are being attracted The arrows show a force on the positive (charge)/(charge) B \checkmark Forces/field (lines) go from positive to negative (Charge) A is negative AND (charge) B is positive	3	3×1.2	ALLOW A is positive and B is negative for this mark only ALLOW forces/field (lines) go from B to A ALLOW maximum of 1 mark if described as opposite poles / positive and negative poles

Question		Answer	Marks	AO element	Guidance
	(ii)	Any one from: North and South (poles) (replace positive and negative charges) The arrows/field lines go from North to South (as opposed to positive to negative) They have similar shape field (patterns) Closeness of field lines represents strength of field (in each case) Opposite poles (and opposite charges) attract \checkmark Both show direction of field (lines)/forces \checkmark	1	1.1	
(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 5(.00) (C) award 3 marks (Rearrange equation) (charge =) energy transferred / potential difference (charge =) $200 / 40 \checkmark$ (charge =) 5 (C) \checkmark	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	

Question			Answer	Marks	AO element	Guidance
17	(a)		Tape measure / metre rule(r)/stick AND Stop clock/watch \checkmark	1	1.2	IGNORE just ruler ALLOW light gates
	(b)	(i)	$\begin{aligned} & \text { Mean }=2(.00) \checkmark \\ & \text { Median }=2.02 \\ & \text { Mode }=2.08 \checkmark \end{aligned}$	3	1.2×3	ALLOW 2.04 for mean (for ignoring 1.84) ALLOW 2.06 for median if 2.04 calculated for the mean
		(ii)	(They have a) wide spread/range / AW \checkmark	1	3.2a	ALLOW (they are) not all close together / don't have a small difference / not similar / AW ALLOW they are too different / have a big gap / not concordant / 0.24 gap / attempt 1 is very different / AW IGNORE not consistent
		(iii)	Improvement must be linked to error Error: Reaction time / difficulty in starting/stopping timer at exact time / AW Improvement: Video/record the drop (and replay using timings from the recording) / use an electronic timing method / use light gates / AW \checkmark OR Error: Not dropping ball from exact height / AW Improvement: Indication of marking the point from where the ball should be dropped from / AW	2	$\begin{aligned} & 3.3 b \\ & 3.3 a \end{aligned}$	Marks can be awarded for errors/improvements in either section IGNORE difficulty in timing without a reason IGNORE human error unless qualified ALLOW use larger distances (so that \% error in time is reduced)

Question			Answer	Marks	AO element	Guidance
18	*		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Detailed explanation about why speed and velocity are different from each other AND Calculations of speed and velocity completed and are correct There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Detailed explanation about why speed and velocity are different from each other AND Calculation of speed OR velocity completed and is correct OR both equations stated/implied OR Explanation about why speed and velocity are different from each other AND Calculations of speed and velocity completed and are correct There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.	6	$\begin{aligned} & 1.1 \times 4 \\ & 2.1 \times 2 \end{aligned}$	AO1.1 Demonstrate knowledge and understanding of the difference between speed and velocity For example: - speed is a scalar - velocity is a vector - speed has magnitude only - velocity has magnitude and direction - speed depends on distance - velocity depends on displacement - speed is rate of change of distance - velocity is rate of change of displacement AO1.2 Recall of speed and velocity equations - speed = distance / time - velocity = displacement / time AO2.1 Apply knowledge and understanding of calculating speed and velocity For example: - speed $=3.0 /(0.5 \times 60)$ - speed $=0.10(\mathrm{~m} / \mathrm{s})$ - velocity $=0.6 /(0.5 \times 60)$ - velocity $=0.02(\mathrm{~m} / \mathrm{s})$

Question	Answer	Marks	$\begin{array}{\|c} \hline \text { AO } \\ \text { element } \end{array}$	Guidance
	Level 1 (1-2 marks) Explanation about why speed and velocity are different from each other. OR Calculation of speed or velocity completed and is correct OR Both equations stated/implied There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.			

Question			Answer	Marks	AO element	Guidance
19	(a)		(Circuit) A - the total resistance is half the value of one of the resistors / less than the smallest resistor value (Circuit) B - the total resistance is double the value of one of the resistors / adding the two resistances together \checkmark	2	2x2.1	Assume answer refers to circuit A unless indicated otherwise ALLOW (Circuit A) is parallel and has 2 loops/paths (for the current to flow through) / AW ALLOW higher level response i.e. correct equation for resistors in parallel ALLOW (Circuit) B is series and has only 1 loop/path (for the current to flow through) / AW ALLOW maximum of 1 mark for (circuit) A is parallel/has two loops/paths and (circuit) B is series/has one loop/path
	(b)	(i)	Any two from: (more current means) ions vibrate more / AW \checkmark (more current means) more electrons collide with ions (in the lattice) / AW \checkmark (more collisions mean) harder for electrons to pass (through wire/lamp) / AW \checkmark (which) increases temperature (and therefore resistance) / AW $\sqrt{ }$	2	2x1.1	ALLOW atoms/particles/molecules for ions ALLOW (lamp) heats up / high(er) temperature
		(ii)	Lamp, cell, ammeter and variable resistor in series Voltmeter in parallel with the lamp \checkmark	2	2x2.2	IGNORE voltmeter in series for this mark ALLOW voltmeter in parallel with ammeter and lamp but not variable resistor

Question	Answer	Marks	AO element	Guidance
(iii)	Measure current and potential difference/voltage Any two from: Change current/variable resistor/pd (value) Take at least 3 sets of different \vee and I readings \checkmark Calculate the resistance using V/I or using the current and pd values / plot a graph of V against $\mathrm{l} \downarrow$	3	3x1.2	ALLOW take readings on ammeter and voltmeter IGNORE repeating same V and I readings ALLOW graph of I against V / graph of I against R

Question			Answer	Marks	AO element	Guidance
20	(a)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.001 / 1 \times 10^{-3}\left(\mathrm{~m}^{3}\right)$ award 2 marks $\begin{aligned} & 0.1 \times 0.1 \times 0.1 \checkmark \\ & =0.001 / 1 \times 10^{-3}\left(\mathrm{~m}^{3}\right) \end{aligned}$	2	2x2.2	
		(ii)	Density $=$ mass/volume $/$ density is proportional to mass (Cube B has $10 \times$ mass of cube $A, s o$) density of cube B is $10 \times$ density of cube $\mathrm{A} \checkmark$	2	$\begin{aligned} & 1.2 \\ & 2.2 \end{aligned}$	ALLOW density is 10 times larger ALLOW numerical values used to show density of cube B is $10 \times$ density of cube A
	(b)		As temperature increases, density decreases / ORA \checkmark	1	3.1a	IGNORE negative correlation / inversely proportional
	(c)		Particles (in solid) are close(r) together / (more) compact / ORA / AW \checkmark	1	1.1	Assume answer refers to a solid unless indicated otherwise
	(d)		Any three from: Boat has bigger upthrust/buoyancy force (compared to weight of lump) / ORA / AW \checkmark Upthrust on boat is equal to weight of boat / resultant force is zero / AW \checkmark Weight of water displaced by the boat is equal to the weight of the boat / AW \checkmark (Overall) density of the boat includes the air / ORA /AW \checkmark (Overall) density of the boat (and air) is less than the density of the water / ORA / AW \checkmark	3	3x2.1	ALLOW upthrust on lump is less than weight of lump / there is a resultant force (acting downwards) ALLOW weight of water displaced by lump is less than weight of lump / AW ALLOW hollow for air ALLOW maximum of 1 mark for boat is hollow / contains air / ORA / AW

Question			Answer	Marks	AO element	Guidance
21	(a)		Mistake 1: Unit for acceleration is missing Correction 1: Unit should be $\mathrm{m} / \mathrm{s} / \mathrm{s}$ or $\mathrm{m} / \mathrm{s}^{2}$ or $\mathrm{ms}^{-2} \checkmark$ Mistake 2: Acceleration at 3.0 N is only recorded to 1 significant figure Correction 2: Acceleration should be recorded to 2 significant figures $/ 4.0\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	4	$\begin{aligned} & 3.2 a \\ & 3.3 b \\ & 3.2 a \\ & 3.3 b \end{aligned}$	ALLOW sig. fig. for d.p. throughout ALLOW answers in any order ALLOW include units for acceleration ALLOW not recorded to 1 decimal place (like the others) ALLOW should be recorded to 1 d.p.Isame number of d.p.
	(b)	(i)	Point correctly plotted at ($5.7 \mathrm{~m} / \mathrm{s}^{2}, 4 \mathrm{~N}$) within $1 / 2$ a small square	1	2.2	
		(ii)	Force is (directly) proportional to acceleration OR Maximum of one mark from: Linear relationship (through the origin) $\sqrt{ }$ As force increases, acceleration increases / ORA \checkmark	2	2x3.1a	ALLOW (directly) proportional to each other / they are (directly) proportional ALLOW $\mathrm{y}=\mathrm{mx}+\mathrm{c}, \mathrm{c}=0$ so $\mathrm{y}=\mathrm{mx}$ IGNORE positive correlation
		(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.7,0.71$ or $0.72(\mathrm{~kg})$ award 2 marks Change in $y /$ change in x or $5(.0) / 7(.0) \checkmark$ $\text { (mass =) } 0.7(0) / 0.71 / 0.72(\mathrm{~kg}) \checkmark$	2	$\begin{aligned} & 2.2 \\ & 2.2 \end{aligned}$	ALLOW eg 4.3/6.0, 4.0/5.6 etc. to within $+/-1 / 2$ small square

Question			Answer	Marks	AO element	Guidance
		(iv)	ALLOW other answers between 0.65 and 0.75 only if workings shown using correct values read from the graph to within $+/-1 / 2$ small square $\checkmark \checkmark$ Not all of the energy is transferred to the trolley / energy is transferred/lost to other stores It assumes all of the force on the trolley is equal to the weight added on the string \checkmark Friction on the pulley / between the wheels and the surface \checkmark Mass of the string/card is ignored \checkmark The card on the trolley was not measured properly \checkmark The card on the trolley did not pass through the light gates vertically/at $90^{\circ} \checkmark$	$\mathbf{2}$	$\mathbf{2 x 3 . 2 a}$	

Question		Answer	Marks	AO	Guidance
	(v)	Any two from: Compensate for/reduce friction, e.g. by raising the ramp / use a linear air-track / oil/grease pulley \checkmark Repeat the experiment and calculate the mean \checkmark Measure the acceleration between two points which are further apart \checkmark Use different equipment (to check if it produces similar results) Use equipment with higher resolution/precision \checkmark Use string/card with less mass/weight \checkmark	2	2x3.3b	ALLOW repeat to remove/identify anomalies ALLOW use lighter string/card / subtract mass of card/string (from measurements) ALLOW use a pulley with less mass to reduce energy wasted when turning pulley / AW
(c)	(i)	Gravitational (potential energy store) to kinetic (energy store)	1	2.1	ALLOW kinetic (energy store) to thermal (energy store) / gravitational (potential energy) to thermal (energy) ALLOW KE for kinetic energy / GPE for gravitational (potential) energy / heat for thermal IGNORE just potential energy / PE
	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2.6 (J) award 4 marks $\begin{aligned} & 86 \mathrm{~cm}=0.86 \mathrm{~m} \checkmark \\ & \text { (Work done =) } 3(.0) \times 0.86 \checkmark \\ & \text { (Work done =) } 2.58(\mathrm{~J}) \checkmark \\ & \text { (Work done }=\text {) } 2.6(\mathrm{~J}) \checkmark \\ & \hline \end{aligned}$	4	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \\ & 1.2 \end{aligned}$	ALLOW ecf for missing or incorrect unit conversion e.g. 260 (J) for 3 marks, 258 (J) for 2 marks

Question		Answer	Marks	AO element	Guidance
22	(a)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{1 2 6 0}$ or $\mathbf{1 3 0 0}(\mathbf{N m})$ award 4 marks $\begin{aligned} & (\text { Force }=70 \times 10=) 700(\mathrm{~N}) \checkmark \\ & \text { (Moment }=\text {) force } \times \text { distance } \\ & \text { (Moment }=) 700 \times 1.8 \checkmark \\ & \text { (Moment }=\text { =) } 1260(\mathrm{Nm}) \checkmark \end{aligned}$	4	$\begin{aligned} & 2.1 \\ & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	ALLOW ecf for using mass not weight e.g. 3 marks for an answer of 126 (Nm), 2 marks for 70 x 1.8 ALLOW ecf for incorrect calculation of force ALLOW ecf for converting 1.8 m to 180 cm e.g. 3 marks for $126000(\mathrm{Nm})$
	(b)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 8 (m/s) award 4 marks $\begin{aligned} & u=0 \text { or } v^{2}=\left(u^{2}+\right) \text { 2as } \\ & v^{2}=2 \times 10 \times 3.2 \text { or } v=\sqrt{ }(2 \times 10 \times 3.2) \checkmark \\ & v^{2}=64 \checkmark \\ & v=8(\mathrm{~m} / \mathrm{s}) \end{aligned}$ OR alternative method: $\begin{aligned} & \mathrm{mgh}=1 / 2 \mathrm{mv}^{2} \\ & \left(70 \times 10 \times 3.2=1 / 2(\times 70) \times v^{2}\right. \\ & 64=v^{2} \checkmark \\ & v=8(\mathrm{~m} / \mathrm{s}) \\ & \hline \end{aligned}$	4	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \\ & 2.1 \end{aligned}$	$\mathrm{v}^{2}-\mathrm{u}^{2}=2$ as does not score a mark

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

